A globally applicable model for the estimation of NDVI values from Sentinel-1 C-band SAR backscatter data. First, the newly created dataset SEN12TP consisting of Sentinel-1 and -2 images is introduced. Its main features are the sophisticated global sampling strategy and that the images of the two sensors are time-paired. Using this dataset, a deep learning model is trained to regress SAR backscatter data to NDVI values. The benefit of auxiliary input information, e.g., digital elevation models, or land-cover maps is evaluated experimentally.