Script to derive and apply crop classification based on Sentinel 1 SAR data in GEE

Janos Meszaros

For the derivation of crop maps a method has been developed with which time series crop information can be predicted based on remote sensing data. The training of the crop classification model has been performed on the cropland data of the LUCAS Land Use / Cover Area Frame Survey of year 2015 and 2018 – revised by d’Andrimont et al. (2020) – merged with the Sentinel-1A and -1B satellite radar images based on d’Andrimont et al. (2021). The pixel based crop classification has been derived using a random forest algorithm on Google Earth Engine platform. The method can be applied for 2015 and all following years. By adding a map of field boundaries the pixel based prediction can be overwritten by the majority of the predicted crop.




Open Atlas, how it works

Find an algorithm

Contact the author

Create a partnership

Endless opportunities